Voting and Stacking in Data-Driven Dependency Parsing
نویسندگان
چکیده
We compare the techniques of voting and stacking for system combination in datadriven dependency parsing, using a set of eight different transition-based parsers as component systems. Experimental results show that both methods lead to significant improvements over the best component system, and that voting gives the highest overall accuracy. We also investigate different weighting schemes for voting.
منابع مشابه
تأثیر ساختواژهها در تجزیه وابستگی زبان فارسی
Data-driven systems can be adapted to different languages and domains easily. Using this trend in dependency parsing was lead to introduce data-driven approaches. Existence of appreciate corpora that contain sentences and theirs associated dependency trees are the only pre-requirement in data-driven approaches. Despite obtaining high accurate results for dependency parsing task in English langu...
متن کاملFeature Engineering in Persian Dependency Parser
Dependency parser is one of the most important fundamental tools in the natural language processing, which extracts structure of sentences and determines the relations between words based on the dependency grammar. The dependency parser is proper for free order languages, such as Persian. In this paper, data-driven dependency parser has been developed with the help of phrase-structure parser fo...
متن کاملImproving data-driven dependency parsing using large-scale LFG grammars
This paper presents experiments which combine a grammar-driven and a datadriven parser. We show how the conversion of LFG output to dependency representation allows for a technique of parser stacking, whereby the output of the grammar-driven parser supplies features for a data-driven dependency parser. We evaluate on English and German and show significant improvements stemming from the propose...
متن کاملEnsemble Models for Dependency Parsing: Cheap and Good?
Previous work on dependency parsing used various kinds of combination models but a systematic analysis and comparison of these approaches is lacking. In this paper we implemented such a study for English dependency parsing and find several non-obvious facts: (a) the diversity of base parsers is more important than complex models for learning (e.g., stacking, supervised meta-classification), (b)...
متن کاملAn improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کامل